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ABSTRACT

Summary: R/EBcoexpress implements the approach of Dawson
and Kendziorski using R, a freely available, open source statistical
programming language. The approach identifies differential co-
expression (DC) by examining the correlations among gene pairs
using an empirical Bayesian approach, producing a false discovery
rate controlled list of DC pairs. This interrogation of DC gene pairs
complements but is distinct from differential expression analyses,
under the general goal of understanding differential regulation across
biological conditions.
Availability and implementation: R/EBcoexpress is freely available
and hosted on Bioconductor; a source file and vignette may be
found at http://www.bioconductor.org/packages/release/bioc/html/
EBcoexpress.html
Contact: DrJADawson@hotmail.com or kendzior@wisc.edu
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1 INTRODUCTION
The freely available R (R Development Core Team, 2009)
package R/EBcoexpress implements the algorithm of Dawson and
Kendziorski (2011), an empirical Bayesian approach for identifying
differentially co-expressed (DC) gene pairs. Microarray and related
high-throughput genomic experiments seek to identify genes that
vary across biological conditions. This is often accomplished by
identifying genes with changes in mean expression level, so-called
differentially expressed (DE) genes [for a review, see Newton et al.
(2007)]. Although useful, major biological insights have resulted
far less frequently than originally expected (Pollack, 2007; Zilliox
and Irizarry, 2007). This is in part because diseases can manifest
due to a de- or re-regulation of genes that does not significantly
affect each gene’s average expression. Thus, identifying other types
of differential regulation may increase our ability to distinguish
between groups and provide insight into their distinct etiologies (for
a discussion, see de la Fuente, 2010). We focus on DC gene pairs,
where ‘co-expression’ refers to some measure of correlation.

Early methods for identifying DC gene pairs conduct pair-specific
tests for selected pairs within a condition, identify those pairs
that are strongly or significantly co-expressed, and declare pairs
to be DC if they are co-expressed in one condition but not another
(Choi et al., 2005; Watson, 2006). Unfortunately, these approaches
sacrifice considerable power by conducting analyses separately
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within condition and they do not provide probabilistic statements
regarding the likelihood that a particular pair is DC. These issues
are largely addressed by Lai et al., 2004, but their extension of the
traditional F-test to accommodate changes in means and correlations
has been shown (Dawson and Kendziorski, 2011) to be overly
conservative. Also, since their test statistic simultaneously quantifies
DE and DC, selection of a pair provides no information about
whether the pair is DE, DC or both.

The approach implemented in EBcoexpress provides a false
discovery rate (FDR) controlled list of significant DC gene pairs
without sacrificing power. It is applicable within a single study
as well as across multiple studies. For more information on the
underlying theory, simulations and an application, please see our
original paper in Biometrics. For a fully worked example with details
at each step of the analysis, please see the vignette that accompanies
the R/EBcoexpress package.

2 FEATURES
In our setting, gene pairs are either equivalently co-expressed (EC)
or DC. When there are three or more conditions, there are many
ways to be DC and hence there will be multiple DC ‘classes’.
R/EBcoexpress calculates posterior probabilities for all EC/DC
classes by assuming a Bayesian framework for the generation
of correlations across conditions for all pairs and estimating
the hyperparameters of that framework using an Expectation-
Maximization (EM) algorithm. We highlight a few aspects of this
process:
Customizable correlation computations: The analysis requires
correlations for some set of gene pairs; we outsource the
computations to C for efficiency. Although Pearson’s correlation
can be used, R/EBcoexpress defaults to the biweight midcorrelation,
which is similar to Pearson’s statistic but is robust to outliers.
Customizable FDR control: R/EBcoexpress outputs a (no. of gene
pairs)-by-(no. of classes) matrix of posterior probabilities for all
EC/DC classes. The EC posterior probabilities may be used to
generate a ‘hard threshold’ version of FDR-control; however, as this
approach is somewhat more conservative than necessary and hence
less powerful, the package provides a function that provides ‘soft
threshold’ FDR-control which controls the posterior expected FDR.
In more complex analyses, the availability of posterior probabilities
for each DC class allows further assortment and inference among
the DC pairs.
Visualization: R/EBcoexpress provides graphical representations
of co-expression exhibited by the data. The user may call up
expression data for a given pair and superimpose a ‘robust’
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Fig. 1. Expression values for a gene pair ALOX15B∼NPY deemed to be DC by our paper’s meta-analysis are plotted using data from two prostate cancer
datasets in (a) and (b). Non-cancerous subjects are in purple (dots) and cancerous subjects are in orange (triangles). A ‘robust’ regression line is superimposed
for each condition (cancerous is dashed). In (c) and (d), relationships within and across conditions for a network of 12 genes greedily built up from a seed of
PARM1 are shown. Deepness of color indicates strength of evidence of DC, where correlations of magnitude ≥0.5 are given the deepest hue of red (+) or
blue (−); magnitudes ≤0.25 have been hidden

regression line (i.e. one calculated from only those values used in
a biweight midcorrelation calculation) for each class. The user may
also examine DC at the network level via graph structures. This
functionality uses the package R/igraph, but we have simplified the
interface so that meaningful DC networks may be generated with
ease (Fig. 1).

3 ANALYSIS INPUTS AND OUTPUTS
A single-study analysis requires a (no. of genes)-by-(no. of samples)
matrix of expression values. These values should be normalized in
some manner; we suggest background normalization but not quantile
normalization, as the latter can produce unpredictable alterations
of correlational structure across samples (Qiu et al., 2005). We
prefer RMA (Bolstad et al., 2003) for background correction of
the intensities contained in the raw (.CEL) files; median correction
should follow RMA pre-processing. Lastly, the raw expression data
are often returned on the log-scale after normalization. Whether or
not this is acceptable depends on the investigator: if associations
between raw measurements are of interest, anti-log the data; if
associations on the log scale are instead important, remain on the
log2 scale.

After EM computations are complete, as aforementioned every
analysis produces a (no. of gene pairs)-by-(no. of classes) matrix
of posterior probabilities for all EC/DC classes which may be used
for FDR-control and, in analyses where there are three or more
biological conditions, the availability of posterior probabilities for
each DC class allows further assortment and inference among the DC
pairs. This output may inform visualization choices as previously
described. Additionally, a function is provided that returns the
number of times each gene is included in a DC pair, given a
threshold; this information may be used to identify genes that exhibit
‘differential hubbing’ (Hudson et al., 2009).

4 SUMMARY
R/EBcoexpress provides a simple interface inside the R statistical
programming language for the identification and exhibition of DC
gene pairs.

Funding: This work was funded in part by R01 GM076274.

Conflict of Interest: none declared.

REFERENCES
Bolstad,B.M. et al. (2003) A comparison of normalization methods for high density

oligonucleotide array data based on bias and variance. Bioinformatics, 19, 185–193.
Choi,J.K. et al. (2005) Differential coexpression analysis using microarray data and its

application to human cancer. Bioinformatics, 21, 4348–4355.
Dawson,J.A. and Kendziorski,C. (2011)An empirical Bayesian approach for identifying

differential co-expression in high-throughput experiments. Biometrics. Doi:
10.1111/j.1541-0420.2011.01688.x.

de la Fuente,A. (2010) From ‘differential expression’ to ‘differential networking’ –
identification of dysfunctional regulatory networks in diseases. Trends Genet., 26,
326–333.

Hudson,N.J. et al. (2009) A differential wiring analysis of expression data correctly
identifies the causal mutation. PLoS Comp. Biol., 5, 5.

Lai,Y. et al. (2004) A statistical method for identifying differential gene-gene
co-expression patterns. Bioinformatics, 20, 3146–3155.

Newton,M.A. et al. (2007) Random-set methods identify distinct aspects of the
enrichment signal in gene-set analysis. Ann. Appl. Biol., 1, 85–106.

Pollack,J.R. (2007) A perspective on DNA microarrays in pathology research and
practice. Am. J. Pathol., 171, 375–385.

Qiu,X. et al. (2005) The effects of normalization on the correlation structure of
microarray data. BMC Bioinformatics, 6, 120.

R Development Core Team. (2009) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.

Watson,M. (2006) Coxpress: differential co-expression in gene expression data. BMC
Bioinformatics, 7, 509.

Zilliox,M.J. and Irizarry, R.A. (2007) A gene expression bar code for microarray data.
Nat. Methods, 4, 911–913.

1940


	R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression
	1 Introduction
	2 Features
	3 Analysis Inputs and Outputs
	4 Summary


